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1. Introduction 

Background. Web-based aircraft visualizations pose a unique technical challenge. There is a 

wealth of data freely available for aircraft positional data, such as that from ADS-B Exchange0; 

many web apps exist that display current position. Sites such as ADS-B Exchange are possible 

because most modern aircraft are equipped with ADS-B transponders, which broadcast the 

ICAO code (unique to each aircraft) as well as optionally a veritable array of data, including  

position, altitude, airspeed and heading. 

Much fewer web-based visualizations are available for trajectories, because of various issues. 

For one, data transfer rates are growing but finite, while aircraft positional datasets are often 

multiple gigabytes large for a single day. There are upwards of 40000 aircraft in the sky at any 

given moment. Additionally, plane trajectory distributions are often very dense—over 

continental Europe, for example. Naively displaying each trajectory on top of each other is 

simply visual clutter and will not allow the user to discover patterns within in, and this is without 

even considering technical limitations of how many trajectories can be displayed at once. 

This paper proposes a method for visualizing aircraft trajectories to help discover high level 

flight path trends, explore trend members, and locate & compare trends by operator or country. A 

simple heuristic is used for stitching sequences of points into trajectories, and EDwP is used for 

calculating the high-dimensional distance between any two given trajectories. The k-nearest 

neighbor (k-NN) algorithm proposed by Lu & Fu9,10 is selected for the clustering approach, and 

clusters are again clustered in a bottom-up hierarchical aggregation approach8. The prototype is 

coded using d3.js11 because of its powerful visualization libraries, and hosted online. 

Care was taken to make sure the design is suitable for an online application, where data is 

transmitted to the client on each load, as opposed to a local application which is guaranteed a 

traditional database with high bandwidth. Although no new visualization techniques are 

proposed, Trajectory Inspector is a novel combination of existing techniques that proposes a 

potential new method to visualize aircraft trajectories. 



In Related Work, some existing aircraft visualizations are introduced and analyzed for design 

hints for Trajectory Inspector. Then, four trajectory distance functions are introduced and 

compared, as well as two clustering algorithms. Presented is the rationale behind selecting each 

algorithm. In Process, the data preprocessing and transformation method used for Trajectory 

Inspector is described in detail. In System Overview, the visual design and interaction design of 

Trajectory Inspector is described. In Evaluation, some interesting trends are introduced. Finally, 

in Conclusion, future work that could be done to improve Trajectory Inspector is introduced. 

2. Related work 

Related work—visualizations. Planefinder1 is an online visualization that maps real-time 

aircraft position to position, aircraft type to icon shape, and aircraft heading to angle. Clicking on 

each icon creates a side-view that displays information such as operator, aircraft type, altitude, an 

image of the aircraft, and so on. Despite the fact that Planefinder only displays the current 

position of aircraft, it conveys an illusion of trajectories due to how icons often follow each other 

in distinct trails across oceans. However, it is difficult to read the visualization near airports due 

to the increased density of the marks on the map.  

UK242 is a non-interactive visualization produced by NATS. Aircraft over the skies of the 

United Kingdom are displayed as moving dots that leave a transparent, fading trail. The 

visualization is in 3D, rendered into a 2D video with a moving perspective. UK24 shows that 

trajectory information can yield insight into traffic patterns that a discrete point view cannot, but 

also shows how dense traffic near airports makes the visualization harder to understand. 



  

   
Figure 1. Top-left, Planefinder1. Top-right, UK242. Bottom-left, edge bundling; figure from [3]. Bottom-right, 

FromDaDy4. 

In Figure 1-BL, we can see that edge bundling on start-destination graphs for the United States is 

very effective at reducing clutter and exposing patterns. While the trajectory data this paper uses 

is positional, not point-to-point, it is possible to take edge bundling as an inspiration for a similar 

process. The concept of the process is thus: 

1. Using some distance measure, put similar segments into a cluster 
2. Using some trajectory combination algorithm, derive a representative trajectory from 

each cluster 
3. For each cluster, use some cluster–cluster distance measure to find clusters of clusters. 
4. For each cluster of clusters, use the representative trajectory of each cluster to find a 

representative trajectory for this cluster of clusters. 
5. Repeat. 

This process is essentially bottom-up hierarchical aggregation8 with a representative for each 

cluster level. 

Last, FromDaDy4 is a sophisticated plane trajectory viewer that utilizes sweeping or brushing 

motions to allow the user to reduce the currently displayed set of data to what the user thinks is 

interesting. In other words, it trusts that the user has the best idea of how to discover interesting 



patterns and facilitates this process of discovery. Although data transformation is an important 

part of infoviz, the role of the user in analyzing data must not be forgotten. 

Related work—distance algorithms. Trajectory Inspector requires a certain number of 

algorithms: a trajectory distance comparer, a clustering algorithm, and a trajectory combination 

algorithm. Due to technical limitations and time constraints, the combination algorithm was not 

finished for the demo and is excluded from this paper, but it is likely that some force-directed or 

data ink-reducing method would be used.  

In this paper, a trajectory is a sequence of two or more points in some coordinate space 

(typically, latitude and longitude). A trajectory in the form T = [p1, p2, p3, p4… pn] would have 

length n. Since Trajectory Inspector uses the lat/long information broadcast by aircraft, when 

comparing trajectories one cannot assume that trajectories have the same length, sampling rate, 

or accuracy. This presents significant challenge in determining how similar two trajectories are. 

A few candidates were considered for the distance algorithm. The first is a naïve element-by-

element comparison of a trajectory, calculating the Euclidian distance between matching pairs 

and returning infinite distance for trajectories of different lengths. It is obvious that this is not a 

viable algorithm because two visually similar trajectories may have wildly different lengths, 

depending on the number of samples for each trajectory. 

One is Edit Distance on Real sequence5 (EDR). EDR is a simple, recursive O(nm) complexity 

trajectory comparison algorithm. For each element in the two sequences, the algorithm attempts 

to • find the distance between the rest of sequence 1 and sequence 2, plus whether the first 

element of each matches • find the distance between sequence 2 and the rest of sequence 1 and 

add one • find the distance between sequence 1 and the rest of sequence 2, and add one.  The 

minimum of the three values is selected as the distance. A match is best described as an 

approximate Manhattan distance. If (|𝑝ଵ௫ − 𝑝ଶ௫| < 𝜖) ∧ (|𝑝ଵ௫ − 𝑝ଶ௫| < 𝜖) , the two points are 

considered to match. For more details, consult [5]. EDR is thus resilient against noise. However, 

Figure 2 shows that for two trajectories with different sample rates, EDR provides vastly 



inaccurate results. Although the trajectories a and b are visually similar, their EDR distance is 3. 

The trajectories b and c are dissimilar but their EDR distance is 1. 

      
Figure 2. EDR(a, b) = 3, EDR(b, c) = 1.                Figure 3, Multiple Assignment, taken from [6] Figure 6(d). 

Another algorithm is Multiple Assignment6 (MA). MA is an O(nm) algorithm that considers the 

similarity between each trajectory as a directed, bipartite graph of assignments, taking inspiration 

from the popular discrete Fréchet distance algorithm, aka the ‘dog-walking algorithm,’ as well as 

DNA analysis techniques. Although the authors assert that MA is robust against noise and 

sampling rate variation, and also provide a trajectory segmentation-and-matching algorithm, MA 

was too difficult to implement so Trajectory Inspector uses a third algorithm with similar 

properties to MA. 

The algorithm Trajectory Inspector uses is Edit Distance with Projection7 (EDwP). EDwP is an 

extension of EDR. Instead of giving a flat cost depending on whether a point matches, EDwP 

attempts to insert new, intermediary points on each trajectory and match on those. Additionally, 

the distance is scaled by the proportion to the total trajectory each segment is. Thus, EDwP is 

less sensitive to sample rate variations. 

 

Figure 4. EDwP illustration, from Fig.3 of [7] 

EDwP is an O(nm) comparison algorithm, where n and m are the lengths of the trajectories being 

compared. So order to create a distance matrix for clustering L trajectories, the complexity of the 

distance matrix function would be O(L2n2), where n is the average length of all the trajectories. 

The authors of EDwP propose a tree structure, TrajTree that is optimized for k-NN lookups that 



would provide sub-O(L2n2) performance. However, once more due to technical and time 

constraints, TrajTree was not implemented in Trajectory Inspector. 

Related work—clustering. Trajectory Inspector requires a clustering algorithm that does not 

require the number of clusters to find as an input, because even with hierarchical aggregation, 

arbitrarily defining a number of clusters to find would likely cause very misleading results. Thus, 

two algorithms were considered for clustering. First is the popular, often-effective DBSCAN12, 

which scans for areas with high density and grows clusters from each seed. DBSCAN does not 

require the number of clusters to be provided, and is able to cluster non-circular patterns well 

(eg, the half-moon dataset), compared to k-means. It is also capable of detecting outliers and 

excluding them from clusters. For testing purposes, the Python library sklearn13’s 

implementation was used. 

The second algorithm is the k-NN clustering algorithm proposed by Lu & Fu10, as described in 

[9]. The algorithm is as follows: 

foreach element in dataset: 
if no clusters exist: 

new cluster ← element 
foreach cluster: 
 d = min(distances of element and each cluster element) 

c = argmin(distances of element and each cluster 
element) 

 if d < threshold: 
  c ← element 
 else: 
  new cluster ← element 
foreach cluster of size 1: 
 outlierCluster ← cluster element 

 

Similarly to DBSCAN, Lu & Fu’s k-NN has the desirable properties of detecting any number of 

clusters without having to provide a number, and having the ability to detect outlier elements. 



However, as Lu & Fu’s k-NN’s cluster size increases, subsequent elements are more likely to be 

put in a given cluster regardless of how similar they actually are, due to the min clause.  

For Trajectory Inspector, technical limitations meant that only fifty rows were used. Under these 

conditions, Lu & Fu’s k-NN produced better results than DBSCAN. 

 
Figure 5. Left, DBSCAN results on data. Right, Lu & Fu’s k-NN’s results. 

DBSCAN tended to cluster every trajectory in the United States into one group and produce a 

small quantity of very small groups. Lowering the threshold simply caused more elements to be 

considered outliers. Lu & Fu’s algorithm produced slightly more differentiated results, so was 

used for the demo. When there are a higher number of rows used, it is possible that DBSCAN 

would perform better. 

3. Process 

Trajectory Inspector’s data processing is majority written in Python, while segments that require 

performance at C#. 

The first step of a visualization is acquiring the data. ADS-B Exchange0 provides data archives 

for sensor data collected by volunteer transponders, available per day. The compressed archive is 

roughly 8GB for each day, and uncompressed is 40GB of JSON files. The data used for the 

demo is August 29, 2017, and has 25,665,057 ‘pings’ of sensor data. Each ping has a wealth of 

data. Some of the data is pulled from the signal an aircraft broadcasts, while others are found by 

looking up the unique ICAO code each aircraft on the ICAO database. Some of the data fields 

are introduced in Table 1. One problem is that almost every data field is optional, even including 



longitude, latitude and timestamp. Roughly 7 million pings (28.9% of total) lacked longitude or 

latitude information, and were excluded. 

From ping From ICAO database 

ICAO code (six digit hex) Operator 

Timestamp Country of registration 

Altitude Aircraft type 

Speed Callsign 

Heading Year of registration 

Squawk Number of engines 

Latitude Wake turbulence class 

Longitude Destination 

… … 

Table 1. Information from ADS-B Exchange. 

The data provided by ADS-B Exchange is in JSON format, but each file often contains minor 

syntax errors. Most common was the trailing comma error, and second most common was 

duplicated {s. A script was ran to fix these errors, then the JSON was inserted into a PostgreSQL 

database and deduplicated. As a result, the data’s size was reduced to 3GB. 

Next, a simple heuristic was applied to construct trajectories from sequences of points per 

aircraft. Each sequence is sorted by the timestamp in ascending order. Points are added to a 

trajectory, until the next point has a timestamp that is more than 1 minute since the previous one. 

Additionally, to aid in segment clustering each trajectory is limited to 30 minutes of flight time.  

The average number of points per trajectory at this point is ~200 at this stage. Considering that 

EDwP is a O(nm) algorithm, and that each trajectory is only up to thirty minutes long, it is 

possible that many of the data points are redundant and can be removed. The Visvalingam-

Whyatt line simplification algorithm14 is applied to each trajectory to simplify the path. Each 

triplet of consecutive points is treated as a triangle, and its area is calculated. Then, points that 

have the smallest area are repeatedly removed until the line is sufficiently simplified. Trajectory 



Inspector’s VW algorithm is a port of the reference implementation produced by Mike Bostock 

of d3.js fame15. After this stage, the path lengths are on average 15 long. 

The EDwP algorithm is run on every pair of trajectories to produce a distance matrix. Trajectory 

Inspector’s implementation was written in Python originally, then ported to C# for increased 

performance, while retaining the readability that a high-level language has—EdwP lends itself 

well to an object-oriented design, and a C implementation would be messy at best.  

Finally, Lu & Fu’s k-NN algorithm is applied to produce clusters of trajectories. Due to the 

nature of clustering, the distance matrix in advance has, at worst, the same runtime as an online 

calculation. Once an initial set of clusters is created, a ‘representative’ trajectory from each 

cluster is created. Trajectory Inspector simply selects the trajectory that minimizes the squared 

distance to every other trajectory as the representative. The clustering process is repeated, with 

each cluster sorted into a fewer number of meta clusters. The outlier cluster is not included in the 

second aggregation stage. In the demo there were roughly fifty clusters after the first stage, and 

less than ten by the second stage. The bottom-up hierarchical approach minimizes the largest 

drawback of Lu & Fu’s k-NN, in that different thresholds can be used for cluster-to-cluster 

grouping while preventing a single mega-cluster from forming. 

Many of these process choices were made for simplicity rather than any deep significance. These 

choices will be discussed in the Future Work section. 

4. System Overview 

Trajectory Inspector is targeted for a browser environment, to lower the threshold of difficulty in 

accessing the visualization. This means that performance is a priority, both in data transmission 

and rendering speed. Browser-rendered SVG is a mature technology and is fairly optimized, but 

even so it is difficult to display more than some thousand individual paths. It is in nobody’s 

interest to render thousands of paths at once, because of the massive visual clutter and overlap 

generated. Also, transmitting the entire dataset upfront is unlikely to be practical, because of the 

sheer size of the data. Therefore, the hierarchical aggregation employed in the data processing 



step is leveraged to reduce visual clutter and improve performance, and the concept of edge 

bundling is also applied to make high-level patterns more obvious. 

 
Figure 6. Mockup of trajectory splitting. 

The initial view would have a small number of thick trajectories displayed. Accordingly, the 

initial data transmission would be the first two or three layers of the cluster hierarchy. The user 

would click a trajectory to display its child clusters, and information about the levels below the 

clicked clusters would be streamed. The demo of Trajectory Inspector does not have the 

trajectory combination feature, though it does have hierarchical aggregation. 

Aside from the technical aspects, Trajectory Inspector also attempts to target the following tasks: 

discover flight trends, explore members of a trend, locate & compare trends by X (country, 

operator…). Figure 7 shows a typical screenshot of Trajectory Inspector in use. 

  
Figure 7. Trajectory Inspector demo. Left, initial view. Right, focused on cluster. 

To the left is the map view. On the map, trajectories are displayed as lines, and the color channel 

is mapped to the cluster. Aircraft positions are mapped to the position channel via a projection 

(the Winkel projection in the demo), since that is the most intuitive for geospatial data. 

Each cluster is effectively a trend, and the user can discover new trends by mousing over a 

cluster. Clicking on a cluster highlights the cluster and de-emphasizes other clusters, thus 



reducing clutter. Clicking on a cluster also sets the filter in the top left corner to “cluster”, and 

the selection to the right is updated with the contents of the cluster, the details of each aircraft 

selected. The top bar of the selection takes on the color of the cluster to provide a hint as to what 

the current selection is. Clicking on an ICAO code will change the filter to “icao” and emphasize 

only the selected aircraft. Clicking on country of registration or operator will also change the 

filter, respectively to “country” and “operator”. An important part of the design is that interacting 

with a selection does not change the selection. This allows the user to rapidly compare various 

elements within a selection. For example, the user could view each American Airlines flight to 

see where the aircraft is coming from and where it is going to, so that it would be in the 

selection.  

  



 

 
Figure 8. Top, selecting ICAO. Notice that the selection does not change. Bottom left, selecting 
United Kingdoms flights. Bottom right, selecting United Airlines flights. 

If the user wishes to view all flights from an operator or a country, they can click the list all 

button in the top right corner and select the preferred type. 

    
Figure 9. Left, list all menu. Right, changed selection to American Airlines. 

Note that the top bar of the selection changes color to match the filter. This is, again, an attempt 

to provide the user with a hint of what the current selection is. There is some risk of a cluster 

color matching up with a filter color, and choosing filter colors that avoid this issue may be a 



preferred method. Alternatively, filter-selections may be patterned, while cluster selections are 

solid colored. 

A not insignificant part of how effective a visualization is lies in the polish. There are many 

features in the demo for maximum usability. One of the features is adaptive line widths, where 

the latitude/longitude graticules and the country outlines change width depending on how 

zoomed in the user is. If a single line width is used for every zoom level, at high zoom the 

outlines would dwarf the trajectories, while at low zoom there will be severe aliasing which hurts 

readability. Another feature is the responsive design, where the map and selection change size 

and position depending on screen width. Mousing over trajectories causes an animation to play, 

where a trajectory grows slightly; changing a filter transitions all non-selected trajectories to be 

thinner. Changing the map view uses the intuitive gestures of “click and drag” and “scroll,” for 

panning and zooming, respectively. Finally, elements that you can interact with in the selection 

change color and gain an underline when moused over. All of these factors contribute towards a 

more intuitive user experience, with lower time to learn how to use the system. 

5. Evaluation 

Usability. In order to gain a rough idea of how intuitive the visualization is, five people were 

selected at random among the author’s acquaintences. Their backgrounds varied, but none 

worked in the field of information visualization. Without any extra explanation—even of what 

the visualization was of—all five were able to access most of the features of the visualization. 



However, the list all button was cited as an example of unintuitive design, because the button is 

small and unemphasized. 

Findings. Because of the limited data actually used in the demo, it is difficult to find meaningful, 

large-scale patterns. However, there were some interesting local patterns, mostly in the form of 

outliers.  

  
Figure 10. Jin Air flight path in orange. 

The orange line is a Jin Air flight that was mostly filtered from the demo as an outlier. Jin Air is 

a South Korean low-cost airline that services Korean domestic flights as well as a small selection 

of Japanese lines. However, one aircraft was sighted flying from a location in Europe, across 

Russia to Seoul. And there are indeed no commerical flights from Korea to Europe serviced by 



Jin Air. However, low-cost airlines often purchase used aircraft rather than commissioning new 

ones. The plane may have been en route from the buyer’s hangar in Europe to Korea.  

Another outlier is a private jet operated by a multilevel marketing company—more commonly 

known as a “pyramid scheme.” The ICAO code A10F9E is registered to SUNRIDER CORP, 

SUNRIDER INTERNATIONAL, and is identified as a McDonnell Douglas MD-80.  

   
Figure 11. Left, A10F9E flight path. Right, a Dogulas MD-8x model also owned by Sunrider. 

The author speculates that Sunrider simply used the company jet as a method to “wow” 

recruitees, flying it on a short loop around the airport. 

It is relatively easy to spot private aircraft between the commercial airlines. Operators are not 

necessarily airliners or corporations, either. One Kevin W. McCue was discovered flying a 1957 

Cessna 172 in the region of Arizona, and two Eurocopter helicopters owned by Mustang Leasing 

LLC were found in Nevada, drawing circular paths rather than long ones. 

6. Conclusion 

Trajectory Inspector is a combination of existing methods to create a novel, web-suitable 

visualization. However, many of the choices made were not the most optimal choice, and much 

work can be done to improve Trajectory Inspector. For example, the EDwP authors also propose 

a data structure dubbed TrajTree7 which supported sub-n2 complexity for comparing two 

trajectories, which would greatly improve runtime. In fact, due to the hierarchical nature of 

TrajTree the separate clustering algorithm might not be required, instead collapsing TrajTree into 

clusters.  Lu & Fu’s k-NN still has difficulty producing distinct clusters in the North America 

region. Be it by modifying the algorithm or selecting a new one, there is no doubt that 



improvements can happen. The segmentation heuristic currently used is quite arbitrary—we may 

be missing patterns which are not obvious from trajectories that are sliced into thirty minute 

segments. Perhaps a segmentation algorithm similar to that proposed by the authors of MA6 may 

yield better results. 

The visualization itself could also benefit from the trajectory combination feature, which was not 

implemented in the demo. Currently, each segment is displayed individually, and this causes 

visual clutter which is only partially ameliorated by coloring each cluster. Also, filters for time 

periods, as well as allowing for combinations of filters (eg, “American Airlines OR United 

Airlines”) may also improve what patterns could be discovered using Trajectory Inspector. The 

number of colors for clusters is sufficient for now, but with increased number of trajectories, 

colors will not be a sufficient method to distinguish between clusters. Clarifying which channel 

clusters are mapped to will improve the visualization. 

Even with all the work that can be done to improve Trajectory Inspector, it is the author’s 

opinion that the current implementation still presents a unique and interesting, if rough, method 

of visualizing aircraft trajectory information in a way that is suitable for the web format. 
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