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Introduction 

The Distributed Cracking Program, or DCP, is an application divided into two 
segments, a server and a client. The server sends out password guessing jobs to 
clients, and clients calculate passwords on multiple threads and returns the answer, 
if applicable. DCP can theoretically scale up to 1023 clients, each with as many 
worker threads as it wants. The server communicates with each client using TCP 
packets, which allows multiple machines to be connected over local area networks 
for maximum processing power.  

DCP is written entirely in C, because DCP was designed for a final project for an 
Operating Systems course using C. It is entirely possible that writing the networking 
and task distribution in a higher level language such as C++/Python/C# and calling a 
C library for the actual calculation may have been more maintainable and leak less 
memory, but this is out of the scope of the course. 

Because DCP serializes tasks into packets consisting of characters for exchanging 
data, it is possible for a client process to be written using a different language and 
interface with DCP as long as the language supports raw sockets. 

Quick start 

Building 

DCP is only confirmed to compile on Unix systems, particularly Debian. 

In the following section, everything before $ is the current directory, and everything 
after $ is a terminal command. 

First you need to compile the pwchecker library.  Navigate to DCP/PwChecker and 
run: 

DCP/PwChecker$make all 

Next, the library must be moved to the appropriate location, DCP/lib. Move it 
manually, or type the command: 

DCP/PwChecker$cp lib/libpwchecker.a ../lib 

Return to the DCP directory and type the command: 



DCP$make crackerapp 

The server and client will be produced in the DCP/bin folder as the executables 
server and client, respectively. 

Running 

This is the syntax for running the server: 

DCP$./bin/server [INPUT FILE] [OUTPUT FILE] 

For example, given an input input.txt and output output.txt in the DCP directory, 
the command will be: 

DCP$./bin/server input.txt output.txt 

The server always runs on port 7777, so make sure it is free. 

This is the syntax for running the client: 

DCP$./bin/client [IP ADDRESS] [NUMBER OF WORKER THREADS] 

For example, if the server is at IP address 127.0.01 and we want 3 worker threads, 
the syntax would be: 

DCP$./bin/client 127.0.01 3 

Once the server is up it goes into an idling state. During this state, any number of 
clients may connect. Type any key into the server console and press enter to start 
running the cracks.  

A client may connect to the server at any time, even while running. The server will 
gracefully accept the connection request and include the client on the next job. 
However, if a client disconnects the server will enter an infinite loop. The server 
does not know which client disconnected, and therefore cannot redistribute its 
workload. The server does not need to finish all jobs before outputting the found 
passwords. The answers for the passwords found before termination will be found 
in the specified output file. 

Note that DCP is untested for large password lengths (>5) because of technical 
limitations. DCP is a prototype and leaks memory, so larger operations may 
overflow and crash. For a reliable password cracking experience, the author 
suggests using a mature, FOSS password cracker rather than one coded by one 
person. 



  



System design 

 

Figure 1: Entire system architecture 

DCP is a networked, distributed program. Its system design is similarly complicated. 
First we will define some terms. Each term has full descriptions later on. 

job: A single hash to brute-force the password for. 

work index: Each job has a separate work index. 

task: A range of passwords to check the hash against. Tasks are encoded in work 
packets. 

main thread: The first thread of a program. 

server main thread: Spawns a liaison thread and loads job info from a file, 
then waits for user input to instruct cracking to begin. 

client main thread: Spawns worker and sender threads, and receives tasks 
from a server. Upon reception of a work packet, spawns a buffer-filler thread. 



liaison thread: The thread of a server which handles task distribution and 
networking. 

handshake: A client establishes a connection to the server, which accepts the 
connection. This is a handshake.  

password index: The enumerated representation for a password. 

work unit: A work unit is a smaller range of passwords to check a hash against. 
Tasks are usually received by a client and broken up into work units to be 
distributed to worker threads. 

buffer: A 100-long threadsafe ring buffer that stores work units produced from a 
buffer-filler thread. 

worker thread: A worker thread consumes work units from a buffer and executes 
the unit. If it discovers the password, the answer is transmitted to the sender 
thread. 

sender thread: A sender thread receives an answer from a worker thread and 
transmits it to the server as an answer packet.. 

buffer-filler thread: A buffer-filler thread receives a task and divides it into work 
units, which are then filled into the buffer for worker threads to consume. 

packet: A packet is a minimum five byte string encoding specific types of data to be 
transmitted over TCP sockets. 

packet header: The packet header is a five byte-long string that informs the 
receiver of the length of the packet to follow, as well as the type of packet. 

start packet: Transmitted from the server main thread to the liaison thread. 
Instructs liaison to begin password cracking.  

work packet: Transmitted from the liaison thread to a client thread. It 
includes info such as the hash to compare against, the password length, the 
work index, and the range of potential passwords to check. 

answer packet: Transmitted from the sender thread to the liaison thread. 
The answer packet simply holds discovered password info. 

  



Job 

Each job is encoded in the input file with the following format: 

[HASH] [PASSWORD LENGTH] 

An example job is: 

4b3bed8af7b7612e8c1e25f63ba24496f5b16b2df44efb2db7ce3cb24b7e96f7 4 

A job represents a password to be cracked.  

Work index 

Each job has a work index to facilitate work distribution, as described in Client main 
thread. 

Task 

A job is divided into multiple tasks, one for each client connected to the server. A 
task is simply a range of passwords to check against. Passwords may be comprised 
of one or more characters 0-9, a-z, A-Z. Therefore, it is trivial to treat passwords as 
base-62 numbers and enumerate them as ranges. 

Server main thread 

The only purpose of the main thread is initialization. Time must be allowed for 
clients to connect, and it is easier to have the user manually start the cracking. 

Because there is already a socket for the liaison thread, the main thread connects 
to the liaison thread’s socket and sends a start packet when the user signals to 
begin cracking.  

Client main thread 

The client main thread establishes a connection to the server and waits for a work 
packet. It then spawns a buffer-filler thread which handles filling the buffer. 

The reason the client spawns a buffer-filler instead of filling the buffer itself is in 
order to receive new work packets. Each work packet has a work index. If the work 
index is higher than the current work index, the client attempts to cancel the 
buffer-filler thread and spawns a new buffer-filler thread with the new information. 
It also updates the current work index. 

 



Before doing each work unit, a worker checks the work unit’s work index against 
the current work index, and skips doing work if the current work index is higher. 
The current work index does not need to be protected by a mutex because only 
one thread writes to it, and it does not matter if the worker thread reads an old 
work index because it is in a while loop. 

Handshake 

Each client sends a handshake to the liaison thread when initializing, in order to 
receive work packets. 

Password index 

As described in task, a password can be treated as a base-62 number and be 
converted into a base-10 number, which serves as its index.  

Work unit 

A work unit includes the following info: 

work index, password index, work range, hash, password length 

It is represented as the workunit struct. 

When the client main thread receives a work packet, it spawns a buffer-filler thread 
which then generates work units. 

Buffer 

The buffer is a 100-work unit-long ring buffer structure with semaphores and 
put/take functions. It is threadsafe.  

Worker thread 

Spawned by a client main thread. Worker threads attempt to take work units from 
the buffer and crack passwords. As described in client main thread, worker threads 
compare the current work index to the work unit’s work index and skips doing work 
if the work unit’s work index is smaller than the current work index, ie, if the work 
unit is outdated. This allows worker threads to quickly empty a buffer that is still 
filled from a previous task and receive new work units. 

When a worker thread discovers a password, it constructs an answer packet and 
sends the answer packet to the sender thread using a semaphore-protected field. 

Sender thread 



The sender thread blocks on a semaphore-protected field, then takes the answer 
packet and transmits it to the liaison thread. 

Buffer-filler thread 

The buffer-filler thread is spawned by a client main thread. It divides a task into 
smaller work units, which are by default have a range of 10000. Define the macro 
BATCH_SIZE when compiling client.c to change this range. Too large a batch size 
will cause worker threads to do a lot of unnecessary work, while too small a batch 
size will incur significant overhead from filling and emptying the buffer. 

Once the entire task has been converted into work units and inserted into the 
buffer, the buffer-filler thread exits. The buffer-filler thread may block on put-ing 
into the buffer, and is not guaranteed to exit before a new task arrives. 

When the client main thread receives a new work packet, it cancels the buffer-filler 
thread via pthread_cancel then creates a new buffer-filler thread. Since the put 
function may block on sem_wait, either the cancel will instantly return or cause the 
buffer-filler thread to cancel, and the old buffer can be safely cleaned up via 
pthread_join. 

Packet header 

The format of the packet header is: 

MMMMT 

where MMMM is the length of the packet, excluding the header and up to 9999, and T 
is the type of packet. Valid values for T include s, w, a. 

This is an example of a packet header: 

  73w 

Notice the two leading spaces. 

Start packet 

The start packet holds no extra information and is always five bytes long. This is the 
only valid form of start packet, including the header: 

   0s 

The start packet simply signals the liaison thread to start cracking. The liaison 
thread also marks the socket that sent the start packet as not a client. 



Work packet 

A work packet encodes a task and is sent by a liaison server to a client. The format 
for a work packet is: 

MMMMwW+ N+ B+ L+ H(64) 

where MMMMw is the header, W+ is at least one digit of work index, N+ is at least one 
digit of number of workers, B+ is at least one digit of task index, L+ is at least one 
digit of password length, and H(64) is the 64 character-long hash. 

The number of workers and the task index is relevant to a client because these two 
numbers, along with the password length, allow the client to determinate the range 
of passwords it is checking the hash against. Sending only task index and number 
of workers therefore allows packets to be much shorter. 

This is an example of a valid work packet: 

  73w3 4 3 8 
1709bc8ccb278eaf47ce59c271217866da96be38f52bd95ec798c29ba71c96c2 

Note that there is a space after the 8. This packet describes a task of work index 3, 4 
workers, and the 4th worker, cracking a password of length 8 as described by the 
hash. 

Answer packet 

An answer packet holds info for a cracked password. It contains work index, 
password, and password length information. The format for an answer packet is: 

MMMMaW+ L+ P+ 

where MMMMa is the header, W+ is at least one digit of work index, L+ is at least one 
digit of password length, and P+ is L+ digits of password.  

This is an example of a valid answer packet: 

  15a3 10 helloworld 

This packet describes an answer for work index 3, a length 10 password 
helloworld. 

Answer packets are sent to the liaison thread by a sender thread. When the liaison 
thread receives an answer packet, it records the packet in an output file and 
distributes the next job. 



Brief description of some functions 

During the process of creating DCP, many helper functions were required. Some 
helper functions are exceptionally interesting and are introduced here. 

serialize_packet(void* packet…), deserialize_packet(void** packet…) 

The function signature is truncated for brevity. These two functions delegate to 
various functions named serialize_work, serialize_answer, and so on, hiding 
the messy pointer-casting logic behind a simple interface. This is an interface 
pattern, a form of proto-OO design implemented in C.  

Unfortunately, the serialize family of functions all use asprintf, which is not a 
POSIX-compliant string function, rather being a GNU function. In order to achieve 
full POSIX compliance, DCP needs its an asprintf shim. 

recv_all(…), send_all(…) 

Neither recv nor send are guaranteed to actually send or receive the entire 
message. recv_all, send_all, and the select() pattern were adopted from the 
fantastic resource for networking in C, Beej’s Guide to Network Programming, freely 
available online. The _all functions simply keep track of the number of bytes 
received from the system call and loop until all bytes are received. 

calc_pwrange(int nworkers, int rangeindex, short pwlen…) 

nth_pwd(unsigned long long index, short pwlen…) 

This functions allow packets to be very small, rarely longer than 100 bytes. Using 
some simple math, clients can reconstruct the correct range of passwords to check 
against from three integers. As described above, this method works by treating 
each password as a base-62 number. 

  



 

Whole picture 

This is a typical example of DCP operation: 

Server starts, loads jobs and waits. 

Server creates liaison thread, starts listening using select. 

Liaison signals main thread. 

Main thread connects to the liaison thread socket and waits for user input. 

Client1 starts, spawns sender and worker threads, then handshakes with server. 

Client2 starts, spawns sender and worker threads, then handshakes with server. 

Main thread receives user input, sends a start packet to liaison. 

Liaison sends two work packets, one each to Client1, Client2. 

Each client receives the work packet, spawns buffer-filler threads. 

Buffer-filler threads insert work units into buffer. Worker threads consume work 
units and do passwork cracking work. 

Client3 starts, spawns sender and worker threads, then handshakes with server. 

Client2’s worker thread discovers the password, signals sender thread. Sender 
thread sends answer packet to liaison thread. 

Liaison thread receives answer packet, outputs to file and sends out new work 
packets. Three total, one each for Client1, Client2, Client3. 

Repeat until all jobs are done. 

Liaison thread exits. 

Client1, Client2, Client3 gracefully exit by segfaulting because the author was not 
able to track down the reason for the segfault. 

  



Challenges faced 

The various design decisions for DCP have been justified above. 

Many challenges were faced while creating DCP. Because C provides nearly no user-
friendly libraries for networking, there is a large amount of boilerplate code before 
any data can even be sent. The example code provided during class (tserver, 
tclient) was adapted into the header simplesockets.h. 

Another issue was using sockets. Sockets provide no information at all of message 
length when receiving. A custom packet protocol (described in detail above) was 
implemented, as well as serialization and deserialization functions. The packet has 
a fixed-length header which describes the length of the packet body. The receiver 
then simply needs to recv_all the packet length to precisely receive the entire 
packet. 

Synchronization was, surprisingly, the least difficult part of this project. In Operating 
Systems class, we exhaustively covered the various methods of synchronization, be 
it via named semaphores, in-memory semaphores, mutexes or conditional 
variables. The buffer provides the vast majority of the synchronization for the client, 
while the server is largely single-threaded. DCP uses threads instead of processes, 
because threads provide many of the advantages of processes, but also share 
memory among threads. Sharing memory means easier setup and tear-down, 
because shared_mem is very difficult to use and dirty to clean up. The stack cleans 
itself up on exit. 

Generating password combinations was a problem solved via the methods 
described above. 

One on-going challenge that has yet to be solved is memory management. It is 
commonly said that C gives a programmer a gun which more often than not ends 
up pointed at her own foot.  Using Valgrind on DCP reveals that many hundreds of 
bytes of memory are lost, but tracking down where and when exactly is an arduous, 
thankless task. Since DCP is not intended for commercial use, the lost memory is 
not a critical issue.  

Another challenge that wasn’t considered critical enough to solve is how the server 
fails to accept a client disconnecting gracefully. DCP (perhaps naively) assumes that 
clients only connect and never drop connection. The solution would involve keeping 
track of which client has which task, and upon connection drop redistributing the 



task to the remaining clients, as well as removing the dropped client from the select 
fd_set. The problem gets more difficult when one of those clients subsequently 
drops, and really isn’t part of the final project description and so was left unsolved.  

Conclusion 

DCP was a valuable learning experience. I have not had much experience with using 
C to code real-world applications, and I believe that I learned much from DCP, and 
that I have a much more solid grasp on C, including generic functions, makefile 
structure, string usage and synchronization. I also re-discovered my burning hatred 
for C as a language—anything related to strings was especially painful—and in the 
future I will most likely not use C unless it is a situation where the choice is between 
C or ASM. However, the semaphore and mutex knowledge gained from DCP is 
broadly applicable to other languages, too, since most languages provide bindings 
to system calls. 

DCP has many aspects that require improvement. The server does not gracefully 
handle client connection drops, and the client segfaults when the server drops. 
Memory is leaked left and right with reckless abandon. But DCP is also a 
distributed, networked computing application, and I believe it fulfills the final 
project criteria. 


